ArcelorMittal presented plans last week for carbon-neutral steel production across its European operations by 2050, but said that the right policies and massive investments of at least $786 billion would be necessary to transition to “green” hydrogen from coal used in furnaces.
“Last year, we announced a target to reduce carbon emissions in our European operations by 30 percent by 2030, with a longer-term ambition to be carbon-neutral by 2050,” Mittal said.
The Problem With Steel
Historically, iron and steel were smelted in a blast furnace by combining coking coal, limestone, iron ore, and blasts of compressed hot air to produce pig iron. Coking coal is a low-ash, low-sulfur coal that has been “cooked” in the absence of oxygen at temperatures of more than 1,800 degrees Fahrenheit. In smelting, the coke acts both as a fuel—to provide the intense heat required—and as a reducing agent, separating oxygen from iron oxide ores to produce carbon dioxide, and leaving almost pure iron in the process. The limestone serves as a flux material, binding impurities from the ore to produce slag.The Path Forward?
According to the authors of the European Green Deal: “Energy-intensive industries, such as steel, chemicals, and cement, are indispensable to Europe’s economy, as they supply several key value chains. The decarbonization and modernization of this sector is essential.”Mittal is confident that the technology exists to produce steel without using carbon.
“With the right support, reducing carbon emissions is certainly achievable, but there is no denying it represents a significant challenge. Making steelmaking carbon neutral is complex and will cost billions of euros,” he said.
He believes that carbon-free steel production can be achieved through some combination of “smart carbon” or “circular carbon” from burning waste plastics and biomass, “clean energy” from wind and solar, and carbon capture and storage technology.
The reduction of iron ore to pure iron would eventually be performed not by coking coal or “smart carbon,” but by hydrogen. However, hydrogen is currently produced most efficiently by splitting natural gas into its carbon and hydrogen constituents to create “blue hydrogen.”
“Green hydrogen,” the preferred choice, would be produced by means of hydrolysis, with wind and solar providing the necessary energy for the hydrolytic reaction.
While explaining that carbon-neutral steel production is theoretically possible, however, Mittal also presented the price tag for the changeover. Transitioning the energy required for European steel production to biomass would cost 50 billion to 70 billion euros ($56 billion to $78 billion), Mittal says. The infrastructure required for capturing, transporting, and sequestering the carbon dioxide generated by European steel production would require an investment of 100 billion to 150 billion euros ($112 billion to $168 billion).
However, Mittal asserts that it is likely to be decades before renewable energy will be available at a scale that could benefit the steel industry.
Implications for American Steel
According to the American Iron and Steel Institute (pdf), the industry supports 2 million U.S. jobs, while contributing some $520 billion in economic activity and $56 billion in federal, state, and local taxes. The steel industry also provides the raw materials for the construction and automotive sectors, as well as strategic industries such as national defense and the energy industry.According to NERA, the CAP would have meant total job losses of 2.7 million, reduced household incomes, and GDP losses of $250 billion by 2025. The iron and steel industry would have shrunk by 19 percent, according to the report, with the coal and petroleum industries suffering even more severe contractions.
Cost of Compliance
According to Mittal’s estimates, “carbon-neutral steel will result in 30-80 percent higher cost versus today’s CO2 intensive steel.”Mittal said that carbon-free steel production would have to involve a policy mechanism, such as a “carbon border adjustment” to create a fair and more competitive landscape “by aligning the carbon costs of EU domestic steel producers with that of imports.”