Three scientists have published a paper claiming that the first explosion at the Chernobyl nuclear plant in Ukraine in April, 1986, was in fact a nuclear explosion and not a steam explosion as experts had previously thought.
Nuclear physicists Lars-Erik De Geer, Christer Persson and Henning Rodhe analyzed the radioactive fallout from Chernobyl that had spread both east and west.
Three days after the explosion, radioactive materials were detected in a Russian city called Cherepovets, 300 miles north of Moscow. These were not originally associated with the main plume of radioactive debris which headed in the opposite direction towards Scandinavia.
The scientists maintain that the second observed explosion, which they agree was a release of steam, was of much lower force, so the material expelled to lower altitudes traveled in a different direction as determined by the prevailing wind patterns on April 26, 1986.
The scientists claim that their hypothesis explains some of the previously mysterious phenomena observed, such as a blue flash above the reactor after the first explosion, and seismic disturbances measured about 60 miles west of the reactor site.
Worst Nuclear Disaster
The explosion on April 26, 1986 at the Chernobyl nuclear power plant is arguably the worst peacetime nuclear disaster the world has seen. Thirty-two plant workers died either from the explosion itself or from acute radiation poisoning. The contamination the blast spread affected millions, and forced the evacuation of hundreds of towns and villages.The event released several times more radiation than the atomic bombs dropped on Hiroshima and Nagasaki in World War II.
New Data Analysis Explains Old Data
Until the three scientists published their paper, everyone assumed that the explosion happened because insufficiently trained plant operators tried to run emergency-simulation tests, and when the reactor started to reach critical temperature levels, the operators tried to insert all the control rods simultaneously. Experts believed that the graphite tips on the control rods reacted in the extreme heat to produce a massive chemical explosion.The new paper points out that a nuclear explosions would have resulted in damage to the reactor that just would not be possible in a chemical or steam explosion.
The damage evident to the 6.6-foot thick floor of the reactor vessel, which was melted right under the core, would be better explained by a nuclear explosion which would have produced the significant heat needed to melt over six feet of steel.
The entire bottom of the reactor vessel was driven downward 13 feet. A secondary steam explosion could have done this, the scientists concede.
However the detection of xenon isotopes some 600 miles northeast, while the main plume of fallout went northwest, cannot be explained unless the first explosion was much more forceful than previously imagined.
While the science to measure the radioactive fallout was available at the time, the computational power needed to precisely model atmospheric airflow patterns was not. Using the latest meteorological science , the three nuclear physicists could see that the xenon isotopes, almost impossible to explain otherwise, could have come from Chernobyl.
Outmoded Reactor Design
De Geer pointed out to Fox News that the type of explosion which happened at Chernobyl could only happen with that outmoded and poorly designed Soviet-era reactor of the type called Reaktor Bolshoy Moshchnosti Kanalnyy (RBMK) or “high power channel-type reactor,” also called a light water graphite-moderated reactor (LWGR).The reactor was designed so that its fuel rods could be removed and replaced while the reactor was still operating, so that refueling didn’t necessitate shutting down and cutting off power to the surrounding area. The design also allowed the reactor to run with insufficient cooling.
As the reactor’s coolant – water – boiled away as steam in the Chernobyl reactor, operators lost the means to control the reaction, which quickly accelerated until pressures within the reactor were beyond the tolerance of the system.
De Geer noted that the current Russian RBMK reactors are much safer.
If you enjoyed reading this article, please consider sharing it.