The authors noted that their findings are “on the very high end of the range found in the literature.”
“Taylor and Schlenker’s numbers are 10–100 times as large as previous estimates,” Richard S.J. Tol, a professor in the Department of Economics at the University of Sussex, told The Epoch Times via email.
Taylor and Schlenker arrived at their estimates using three separate modeling strategies. In addition, they ran sensitivity checks to rule out potential confounds, including economic activity, other pollutants, and their assumptions about the precise relationship between carbon dioxide levels and crop yields.
Their models were based on data from 2015 through 2020 collected by NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite, which they replicated with NOAA’s CarbonTracker system. They also used county-level data on corn, soybeans, and winter wheat yields from the U.S. Department of Agriculture’s (USDA) National Agricultural Statistics Service.
Taylor and Schlenker found that an increase of 1 part per million of carbon dioxide raised corn yields by 0.5 percent, soybean yields by 0.6 percent, and wheat yields by 0.8 percent.
“Put another way, yields may have increased 1–2 [percent] per year due to CO2 fertilization in recent years,” the authors wrote, noting the positive correlation between increased atmospheric carbon dioxide and greater agricultural yields in recent decades.
They also noted that the potentially dramatic fertilizing effect of atmospheric carbon dioxide might not be so unexpected, given how it’s used in actual agricultural greenhouses.
“The gas has long been pumped into greenhouses to spur photosynthesis and increase the yield of horticultural crops. Optimal CO2 concentrations of 900 [parts per million] have been suggested, which is over twice current ambient levels,” the authors wrote.
Taylor and Schlenker’s approach contrasts with field- and laboratory-based studies on carbon dioxide enrichment. The authors argued that such experiments “are limited in the extent to which they reflect real-world growing conditions in commercial farms at a large geographic scale.”
The research has sparked a range of reactions on Twitter.
In an email exchange with The Epoch Times, Roberts confirmed that he doesn’t believe their confounding due to technical change is likely to be an issue in Taylor and Schlenker’s study, adding that any measurement error “could go either way,” and that the satellite data used by Taylor and Schlenker are likely superior to ground-based measurements with respect to accuracy.