New research sheds light on how the brain combines external information and internal memory to build a sense of touch.
The research could help scientists understand how to better treat strokes and autism spectrum disorder.
When you touch something, whether stepping onto a sandy beach or stroking the back of a dog, sensations fly into your brain. You feel the coarse grain of the sand under your feet, the fluffiness of the fur on your hand.
But you also bring a bit of yourself into the feeling: Along with the external stimulation from the beach or pup, there’s the memory of past moments—toweling sand from your toes during a summer vacation, snuggling with a much-missed family pet. We all agree that something feels abrasive or soft, but interpret that sensation slightly differently.
Chen and his team used the Allen Institute’s atlas of the mouse brain—a catalog of the different types of brain cells—as a starting point for the project. Chen says the atlas is great for pinpointing the location and category of a neuron, but it doesn’t really tell researchers much about the neuron’s functions. His findings bring that detail and color.
“It’s another level of understanding for how everything fits together,” says Chen. “The biggest thing is that we’ve married the catalog with the functional definition—that’s really going to open up a lot of ways for us to understand the brain.”
For example, let’s say you’re rummaging through a bag feeling around for your car keys. Your brain has learned what keys feel like, so it’s filling in information as you are feeling objects of different textures or shapes to guide your search. However, there are times when you feel something, like a sharp edge, that really jumps out and tells you that you’re on the right track and that you’ve maybe found your keys. Our findings essentially uncover that there is a dedicated circuit composed of specific cells in the catalog that we call hub cells. These cells help to alert the brain that you’ve come across a salient feature that needs to be investigated further.