STORY AT-A-GLANCE
- For a number of years now, researchers have theorized and found evidence suggesting Alzheimer’s disease may in fact be a type of prion-based disease, capable of being contracted via prion-contaminated meat and transmitted via certain invasive medical procedures
- Research published in 2011 found a prion-like protein called TDP-43 in 25% to 50% of Alzheimer’s patients, and research presented in 2014 revealed Alzheimer’s patients with TDP-43 were 10 times more likely to have been cognitively impaired at death than those without it
- More recent research adds further weight to this hypothesis, finding the two hallmark proteins associated with Alzheimer’s — amyloid beta and tau — act as prions, effectively making it a double-prion disease
- Higher levels of prion-like amyloid beta and tau were found in those with early onset of Alzheimer’s who died at an earlier age, with tau buildup showing the strongest correlation
- Compared to a patient who died of Alzheimer’s at the age of 90, a patient who died at 40 had on average 32 times higher amounts of tau prions in their brain
- Other recent studies suggest amyloid beta is an antimicrobial peptide, a primary effector protein of your innate immune system that target bacteria, viruses and fungi, which has led to the development of the antimicrobial protection hypothesis of Alzheimer’s disease. The presence of beta amyloid may not be the actual cause of Alzheimer’s but rather the result of an innate defense mechanism against prion infection
Both BSE and CJD are the result of a prion infection; both are untreatable and always fatal. Sporadic CJD (sCJD), a form that appears without known risk factors, accounts for nearly 85% of diagnosed CJD cases:[3]
CJD is difficult to diagnose, as taking a brain biopsy to rule out a disease is impractical. However, in 2018, the National Institutes of Health published work from colleagues at the University of California San Diego and San Francisco, showing you can measure the distribution and level of prions in the human eye.[4]
Alzheimer’s Disease Linked to Prions
For a number of years now, researchers have theorized and found evidence suggesting Alzheimer’s disease may in fact be a type of prion-based disease,[6][7][8] capable of being contracted via meat[9] and transmitted via certain invasive medical procedures.[10]“Between 1958 and 1985, a number of individuals with short stature received shots of human growth hormone extracted from the pituitary glands of cadavers … Some of these samples were contaminated with prions that caused certain patients to develop Creutzfeldt-Jakob disease (CJD), a rare and fatal brain disorder.
Up to Half of Alzheimer’s Patients Have Prion-Like Proteins
Mounting research reveals a compelling link between a protein known as TDP-43 and neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Lou Gehrig’s disease.TDP-43 behaves like the prions responsible for the brain destruction seen in Mad Cow and Chronic Wasting Disease.[17]According to research[18] published in 2011, TDP-43 pathology is detected in 25% to 50% of Alzheimer’s patients, particularly in those with hippocampal sclerosis, characterized by selective loss of neurons in the hippocampus, which is associated with memory loss.
Alzheimer’s Disease — A Double-Prion Disorder
More recent research by scientists at the University of California San Francisco (UCSF) adds further weight to the hypothesis that Alzheimer’s disease is a prion-related disease. The study,[21][22] published in the May, 2019, issue of Science Translational Medicine, found that the two hallmark proteins associated with Alzheimer’s — amyloid beta and tau — indeed act as prions, effectively making it a double-prion disease.Prions, while being misfolded proteins and not viruses or bacteria, have the curious capacity to spread in a self-propagating manner by forcing normal proteins to misfold. The first prion, called PrP, was discovered in the 1980s, when it was identified as the cause of CJD and SBE.[23]
As noted by UCSF,[24] it was “long suspected that PrP was not the only protein capable of acting as a self-propagating prion, and that distinct types of prion could be responsible for other neurodegenerative diseases caused by the progressive toxic buildup of misfolded proteins.”
Tau Prion Levels Strongly Correlate to Longevity
Importantly, higher levels of prion-like amyloid beta and tau were found in those with early onset of Alzheimer’s who died at an earlier age, with tau buildup showing the strongest correlation. Compared to a patient who died of Alzheimer’s at the age of 90, a patient who died at 40 had on average 32 times higher amounts of tau prions in their brain. As noted by UCSF:[27]“Alzheimer’s disease is currently defined based on the presence of toxic protein aggregations in the brain known as amyloid plaques and tau tangles, accompanied by cognitive decline and dementia.
“I believe this shows beyond a shadow of a doubt that amyloid beta and tau are both prions, and that Alzheimer’s disease is a double-prion disorder in which these two rogue proteins together destroy the brain.
“We have recently seen many seemingly promising Alzheimer’s therapies fail in clinical trials, leading some to speculate that we have been targeting the wrong proteins. But what if we just haven’t been designing drugs against the distinctive prion forms of these proteins that actually cause disease?
What Makes Amyloid Infectious?
A study[30] published in the journal Prion in 2014 sought to determine why certain proteins prone to form amyloids have the capacity to infect their neighbors. Here, too, the author referred to Alzheimer’s as a prion disease, specifically with reference to the amyloid plaques formed:“The conformational diseases, linked to protein aggregation into amyloid conformations, range from non-infectious neurodegenerative disorders, such as Alzheimer’s disease (AD), to highly infectious ones, such as human transmissible spongiform encephalopathies (TSEs). They are commonly known as prion diseases.
“Recent findings in the field have shown that the number of nuclei of aggregation could be a factor that affects the infection capacity of amyloid-prone proteins, just as their intrinsic cytotoxicity does.
The following year, 2015, the same author, joined by several others, published a second paper[32] in the same journal, titled “Amyloids or Prions? That Is the Question.” “Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence,” they write.
The Antimicrobial Protection Hypothesis of Alzheimer’s
Other recent studies,[33][34][35] meanwhile, suggest the amyloid beta found in Alzheimer’s patients is also an antimicrobial peptide (AMP). AMPs are the primary effector proteins of your innate immune system that target bacteria, viruses and fungi. They also act as mediators of inflammation and play a role in cytokine release, angiogenesis and more.[36]In one such study,[37] the authors suggest amyloid beta, as an AMP, “utilizes fibrillation to protect the host from a wide range of infectious agents.” Another study[38] points out that “Ancient origins and widespread conservation suggest the human Aβ sequence is highly optimized for its immune role.”
Findings such as these would support the hypothesis that amyloid beta protein might actually be targeting prions and trying to protect the host from infection. In other words, the presence of beta amyloid may not be the actual cause of Alzheimer’s but rather the result of an innate defense mechanism against prion infection, perhaps acquired through consumption of prion-infected meat.
“We explore here a novel model for amyloidogenesis in Alzheimer’s disease (AD). This new perspective on AD amyloidosis seeks to provide a rational framework for incorporating recent and seemingly independent findings on the antimicrobial role of β-amyloid and emerging experimental, genetic, and epidemiological data, suggesting innate immune-mediated inflammation propagates AD neurodegeneration …
Alzheimer’s Is Largely Preventable
It is often believed dementia is a condition that can’t be controlled, but there are many factors you can influence to greatly reduce your risk. It is important to address several factors, however, and not focus exclusively on only one or two.That said, improving your cardiovascular fitness is an excellent place to start, when combined with other approaches to resolve mitochondrial dysfunction, it can be highly effective in preventing cognitive decline.
Additionally, one of the most effective and simple strategies for increasing heat shock proteins, which are responsible for refolding the amyloid and tau proteins properly, is near infrared sauna. I personally believe this is a strategy that virtually everyone over 50 should regularly engage in. Please review my engaging interview with Brian Richards below for more details on this valuable therapy.
[embed]https://www.bitchute.com/video/6kwtOQtqSySY/[/embed]