By Robert Finlay
For more than two decades, corporate executives and business owners have been obsessed over capturing as much data as possible, from clients, employees, suppliers, developers, and other relevant sources. Due to the relatively modest volume of data created at the time, whoever held the most data had the greatest competitive advantage. But the thing that has changed in the data space between then and now is abundance.Let’s explore the importance of data consumption and see the resources businesses can use to optimally process and leverage their data.
Why Data Consumption Is Important
There are two types of data:- Raw, unstructured data, consisting of numbers or lines of code.
- Processed data, which is raw data that has been cleaned, organized, and transformed into information (i.e., knowledge).
But how do you create structured data?
The answer is through data consumption.
In many ways, how a company consumes data is similar to gold mining. Gold, a precious metal, only becomes valuable once it’s excavated from the earth, refined, and melted into functional items like jewelry or microchips (a more valuable end-product.)
A recent example of effective data consumption can be found in Netflix’s success with quantitative data. The billion-dollar online streaming platform captures viewing information from its hundreds of millions of subscribers and uses the data to make personalized recommendations for new shows. This efficient application of data analysis helps the company retain 93 percent of its customers and ensures 80 percent of its content is streamed.
The larger point here is, no matter the size, every organization must consume data judiciously to maintain its longevity.
4 Methods of Data Consumption
There are four proven ways a business can analyze data:- Descriptive Analytics evaluates historical data to identify patterns and trends. Descriptive analytics is the most common approach to data consumption as it centers on summarizing data and identifying general trends.
- Diagnostic Analytics reviews data to determine why an event occurred in the past. Through data mining and correlation, diagnostic analytics spots trends and anomalies—an operation that’s a step beyond the functions of descriptive analytics.
- Predictive Analytics analyzes data to forecast or predict future patterns. Predictive analytics, popular among large corporations, involves consuming data in a way that proactively drives business decisions and revenue.
- Prescriptive Analytics applies descriptive and predictive data to test multiple variables and calculates the best possible outcome. Prescriptive analytics compiles the results of all other methods to provide recommended courses of action.
For instance, auto mechanics trying to determine why an engine failed may use diagnostic analytics. Meanwhile, a company like Amazon could employ predictive and prescriptive analyses to recommend new products to consumers and stimulate sales.
Tools That Drive Data Analysis
Once companies have identified the best approach to evaluate their data, it’s essential they select the right resources to interpret it.- Third-party analytics. Numerous tech companies, such as Google and Facebook, specialize in collecting and analyzing the data of other businesses and providing elementary analytics to owners. These analytics are an excellent tool for small businesses with limited budgets or no need for deep statistics.
- Internal data analysts. Mid- to large-size companies sometimes hire a dedicated data analyst whose sole responsibility is to oversee the processing and organization of all their data. Bringing on such a specialist provides the greatest, though pricey, flexibility.
- Custom-built data platforms. Organizations that process a massive amount of data can custom-build data analytics platforms from scratch. These platforms include robust dashboards that analyze millions of datasets in real-time. Their implementations have streamlined the operations of many multinational corporations.
Rather than taking the immediate dive into data analytics, the firm began slowly by introducing AI to facilitate its data collection, which in 2019 helped the company underwrite $7.9 billion in loan volume and manage a $31.2 billion portfolio.
Only recently did Bellwether Enterprise add reporting modules to provide the management team with detailed data analytics. The firm’s path offers a model approach for a commercial real-estate operator to select the best resources to analyze their data.
The Future Is Data Analysis
Our digital economy has evolved beyond the point where data collection alone can facilitate success. Now, getting ahead requires collecting and evaluating data to gather crucial insights on market demand, running lean, and generating consistent returns.There was a time when data accumulation and interpretation seemed a daunting task. But in the 2020s, we have concrete methods, tools, and resources to streamline both processes.
It’s time to equip your business to achieve exponential growth—and scale with confidence—by prioritizing strategic data consumption.