By early childhood, the sight regions of a blind person’s brain respond to sound, especially spoken language, new research shows.
The results, which appear this week in the Journal of Neuroscience, suggest a young, developing brain has a striking capacity for functional adaptation.
“The traditional view is that cortical function is rigidly constrained by evolution. We found in childhood, the human cortex is remarkably flexible,” said Johns Hopkins University cognitive neuroscientist Marina Bedny, who conducted the research while at Massachusetts Institute of Technology. “And experience has a much bigger role in shaping the brain than we thought.”
Bedny, an assistant professor in the psychological and brain sciences department, studied 19 blind and 40 sighted children, ages 4 to 17, along with Massachusetts Institute of Technology cognitive scientists Hilary Richardson and Rebecca Saxe. All but one of the blind children were blind since birth.
Stories, Music, and Words
They monitored the children’s brain activity with functional magnetic resonance imaging while the children listened to stories, music, or the sound of someone speaking an unfamiliar language. The blind children’s vision portion of the brain, the left lateral occipital area, responded to spoken language, music, and foreign speech—but most strongly to stories they could understand. In sighted children and sighted children wearing blindfolds, that same area of the brain didn’t respond.
The researchers concluded blind children’s “visual” cortex is involved in understanding language.
Working with individuals who are blind offers cognitive researchers an opportunity to discover how nature and nurture, or a person’s genes and their experience, sculpt brain function.
Though scientists have shown that occipital cortexes of congenitally blind adults can respond to language and sound, this study offers the first look at how and when the change in brain function occurs.
Very Early in Life
The team found the blind children’s occipital cortex response to stories reached adult levels by age 4. Because spoken language had colonized the brain’s visual region so early in the children’s development, the team realized the brain adaptation had nothing to do with a child’s proficiency in Braille. Scientists had previously guessed that brain plasticity for spoken language in blind people had something to do with Braille.
Blind children’s occipital reaction to the other sounds, music, and foreign speech, did increase as they aged.
Bedny believes her findings could one day lead to improved therapies for people with brain damage. If someone had a damaged part of the brain, she said it could be possible to train another part of the brain to do the damaged part’s work.
“Early in development, the human cortex can take on a strikingly wide range of functions,” Bedny said. “We should think of the brain like a computer, with a hard drive ready to be programmed and reprogrammed to do what we want.”
The David and Lucile Packard Foundation and the Harvard/MIT Joint Research Grants Program in Basic Neuroscience supported the study.
This article was originally published by Johns Hopkins University. Republished via Futurity.org under Creative Commons License 4.0.