Researchers have detected at least four “cryptic” variants of SARS-CoV-2, the virus that causes COVID-19, in samples of wastewater from New York City’s public sewer system.
The latest COVID variants have spread like wildfire across the globe in recent months, leading many scientists to wonder when the next variant will appear. The new research may get us one step closer to making that determination.
Atypical Mutations
The idea for this project started in March 2020 after John Dennehy, a virologist and professor of biology at Queens College, City University of New York, began looking for different ways to analyze the impact of the COVID-19 pandemic.Monica Trujillo, an associate professor at Queensborough Community College, City University of New York, shared with Dennehy a study from Australia that described using wastewater to track the spread of a coronavirus, and it inspired Trujillo to ask officials from the New York City Department of Environmental Protection to send her wastewater samples in order to conduct similar work.
In the summer of 2020, Dennehy and Trujillo teamed up with Davida Smyth, the lead author of the current study. Smyth, now an associate professor at Texas A&M University-San Antonio, was at The New School, New York at the time. They put together a team of researchers to begin tracking the spread of coronavirus via New York City’s wastewater.
Wastewater Surveillance\
On the podcast, he heard Dennehy describe their targeted approach, which happened to be the same method University of Missouri researchers were using to test samples of wastewater for SARS-CoV-2 in Missouri, but with one key difference—University of Missouri was analyzing a larger region of the virus genome for possible mutations. Within a week, Johnson had samples of NYC wastewater delivered for further analysis.
“When we first started with the samples from New York City, I was looking to see if they had the same virus sequences that I saw in some of my samples from St. Louis,” Johnson says. “They were different, but all of them had similar mutations in common at one particular location on the virus—Q498. What’s amazing is that in most of the samples from New York City, the Q in Q498 had turned into a Y, or glutamine into tyrosine. If you look at the database, there was not, and continues to not be, a human patient who has had that mutation.”
“An animal in Missouri is not going to mix with the same type of animal in New York City,” Dennehy says. “Therefore, the evolution of the virus in each geographic area is independent of each other, but because it’s the same animal, the virus looks the same in both places.
“For instance, we think conditions in South Africa that gave rise to the Omicron variant are the same conditions in New York City that gave rise to our cryptic variants. As a biologist, I thought the spread of Delta was menacing, but the speed [with] which Omicron took over New York City is on another level.”
“I’m interested in how we can take what we know and apply it to the real world where it is needed the most,” says Smyth, who is also the deputy director for the National Center for Science and Civic Engagement.
Additional coauthors are from Texas A&M University-San Antonio; Queensborough Community College, City University of New York; Long Island University; and the University of Missouri.
The New York City Department of Environmental Protection, a donation from the Linda Markeloff Charitable Fund, and a grant from the National Institutes of Health funded the work.